Probability Based Independence Sampler for Bayesian Quantitative Learning in Graphical Log-Linear Marginal Models
نویسندگان
چکیده
منابع مشابه
Marginal log-linear parameterization of conditional independence models
Models defined by a set of conditional independence restrictions play an important role in statistical theory and applications, especially, but not only, in graphical modeling. In this paper we identify a subclass of these consisting of hierarchical marginal log-linear models, as defined by Bergsma and Rudas (2002a). Such models are smooth, which implies the applicability of standard asymptotic...
متن کاملLearning Bayesian Probability Graphical Models and Abduction
In this chapter I review Bayesian statistics as used for induction and relate it to logic based abduction Much reasoning under un certainty including induction is based on Bayes rule Bayes rule is interesting precisely because it provides a mechanism for abduc tion I review work of Buntine that argues that much of the work on Bayesian learning can be best viewed in terms of graphical models suc...
متن کاملLearning, Bayesian Probability, Graphical Models, and Abduction 1
In this chapter I review Bayesian statistics as used for induction and relate it to logic-based abduction. Much reasoning under uncertainty , including induction, is based on Bayes' rule. Bayes' rule is interesting precisely because it provides a mechanism for abduction. I review work of Buntine that argues that much of the work on Bayesian learning can be best viewed in terms of graphical mode...
متن کاملQuasi-Symmetric Graphical Log-Linear Models
We propose an extension of graphical log-linear models to allow for symmetry constraints on some interaction parameters that represent homologous factors. The conditional independence structure of such quasi-symmetric (QS) graphical models is described by an undirected graph with coloured edges, in which a particular colour corresponds to a set of equality constraints on a set of parameters. Un...
متن کاملConjugate and conditional conjugate Bayesian analysis of discrete graphical models of marginal independence
A conjugate and conditional conjugate Bayesian analysis is presented for bi-directed discrete graphical models, which are used to describe and estimate marginal associations between categorical variables. To achieve this, each bi-directed graph is re-expressed by a Markov equivalent, over the observed margin, directed acyclic graph (DAG). This DAG equivalent model is obtained using the same ver...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bayesian Analysis
سال: 2019
ISSN: 1936-0975
DOI: 10.1214/18-ba1128